: كل من المعادلات التالية
11 = 3 -
س
2 ، 9 = 4 + س
، 9 =
س
3
تسمى معادلة فى مجهول واحد أو معادلة فى متغير واحد ونرمز له بالرمز س مثلاً
:حل المعادلة يعنى
ايجاد قيمة المتغير س الذى يحقق المعادلة
اى أن الطرف الايمن للمعادلة = الطرف الايسر للمعادلة
مجموعة حل المعادلة تعتمد على مجموعة التعويض
:وهى تتضح فى الامثلة التالية
:مثال 1
8 = 2 +س
المعادلة أوجد مجموعة حل
{ -2 , 0 , 3 } إذا كانت مجموعة التعويض هى
الحــــــل
من مجموعة الحل نأخذ س = -2
الطرف الأيمن = -2 + 2 = 0
5 = 2 + س .:
لذلك الطرف الايمن للمعادلة ≠ الطرف الايسر
الطرف الايسر= 5
اى أن س = -2 لاتحقق المعادلة أو س = -2 ليست حل للمعادلة
5 = 2 + س
الأيمن للمعادلة = 5
الطرف \
نأخذ س = 0
الطرف الأيسر للمعادلة = 0 + 2 = 2
الطرف الأيمن للمعادلة ≠ الطرف الأيسر للمعادلة
أى أن س = 0 لايحقق المعادلة
أى أن س = 0 ليست حل للمعادلة
الأيمن للمعادلة = 5
الطرف \
نأخذ س = 3
الطرف الأيسر للمعادلة = 3 + 2 = 5
س = 3 يحقق المعادلة
\
5 = 2 + س
أى أن س = 3 حل للمعادلة
خواص علاقة التساوى
11 = 3 -
س
2 ، 9 = 4 + س
، 9 =
س
3
تسمى معادلة فى مجهول واحد أو معادلة فى متغير واحد ونرمز له بالرمز س مثلاً
:حل المعادلة يعنى
ايجاد قيمة المتغير س الذى يحقق المعادلة
اى أن الطرف الايمن للمعادلة = الطرف الايسر للمعادلة
مجموعة حل المعادلة تعتمد على مجموعة التعويض
:وهى تتضح فى الامثلة التالية
:مثال 1
8 = 2 +س
المعادلة أوجد مجموعة حل
{ -2 , 0 , 3 } إذا كانت مجموعة التعويض هى
الحــــــل
من مجموعة الحل نأخذ س = -2
الطرف الأيمن = -2 + 2 = 0
5 = 2 + س .:
لذلك الطرف الايمن للمعادلة ≠ الطرف الايسر
الطرف الايسر= 5
اى أن س = -2 لاتحقق المعادلة أو س = -2 ليست حل للمعادلة
5 = 2 + س
الأيمن للمعادلة = 5
الطرف \
نأخذ س = 0
الطرف الأيسر للمعادلة = 0 + 2 = 2
الطرف الأيمن للمعادلة ≠ الطرف الأيسر للمعادلة
أى أن س = 0 لايحقق المعادلة
أى أن س = 0 ليست حل للمعادلة
الأيمن للمعادلة = 5
الطرف \
نأخذ س = 3
الطرف الأيسر للمعادلة = 3 + 2 = 5
س = 3 يحقق المعادلة
\
5 = 2 + س
أى أن س = 3 حل للمعادلة
خواص علاقة التساوى